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SUMMARY

This paper analyses the numerical stability of coupling procedures in modelling the thermal diffusion in a solid
and a ¯uid with continuity of temperature and heat ¯ux at the interface. A simple one-dimensional model is
employed with uniform material properties and grid density in each domain. A number of different explicit and
implicit algorithms are considered for both the interior equations and the boundary conditions. The analysis
shows that in general these are stable provided that Dirichlet boundary conditions are imposed on the ¯uid and
Neumann boundary conditions are imposed on the solid; in each case the imposed values are obtained from the
other domains. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

This analysis is motivated by interest in numerical procedures for coupling separate computations of

thermal diffusion in a solid and a ¯uid. A typical example application is the computation of heat

transfer to a blade in a gas turbine. The surrounding air in a high-pressure turbine is on average at a

much higher temperature and therefore there is a signi®cant heat ¯ux from the ¯uid into the turbine

blade. In steady state this is matched by a corresponding heat transfer from the blade to relatively

cold air ¯owing through internal cooling passages.

One approach to the numerical approximation of the above situation would be the use of a single,

consistent, fully coupled discretization modelling both the solid and the ¯uid plus the boundary

conditions at the interfaces.1 However, for the solid it is the scalar unsteady parabolic PDE which

describes the thermal diffusion, while for the ¯uid the appropriate equations are the Navier±Stokes

equations with suitable turbulence modelling. Therefore the production of a single, fully coupled

code for the combined diffusion application can be as much work as writing the individual programs

for the separate solid and ¯uid applications.

Since there are often existing codes which accurately and ef®ciently solve these individual

problems, a more practical approach in many circumstances is to use these together to analyse

coupled problems.2±7 Both CFD codes and thermal analysis codes usually have the capability to
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specify either the temperature or the heat ¯ux at boundaries. A natural choice therefore for coupling

these codes is to specify the surface temperature at the interface in one code, taking the value from

the other code, the boundary heat ¯ux in the second code, taking its value from the ®rst code.2,3 A

concern is whether there is any possibility that this coupling procedure will introduce a numerical

instability which does not exist for the uncoupled problems. This is the issue that is addressed in this

study.

The general theory for the analysis of numerical interface or boundary condition instabilities is

well established8,9 but can be very complicated to apply in practice. In 2D and 3D computations of

engineering interest, one class of error modes which might be unstable is those whose variation is

purely in the direction normal to the interface between the solid and ¯uid. The ®nite difference or

®nite volume equations for this class of error modes reduce to being one-dimensional and therefore in

this paper we simplify the analysis for this diffusion problem by restricting attention to a simple 1D

model problem with a uniform grid on either side of the interface. Since there is no velocity

component normal to the solid boundary in 2D and 3D ¯ows, it is appropriate in the 1D model

problem to omit any convection term. Stability for this 1D model problem is a necessary condition for

stability of the real 2D and 3D computations. It may or may not be a suf®cient condition for stability,

but understanding the nature of possible 1D instabilities clearly gives insight into the potential

instabilities in 2D and 3D computations.

2. ANALYTIC PROBLEM

The parabolic PDE describing unsteady thermal diffusion is

c
@T

@t
� ÿ @q

@x
; q � ÿk

@T

@x
: �1�

Here T �x; t� is the temperature, q�x; t� is the heat ¯ux, c�x� is the heat capacity and k�x� is the

conductivity. These equations are valid for arbitrary, piecewise continuous, positive functions c�x�
and k�x�. The ®nite volume algorithms to be analysed are all based on the integral version of this

equation,

d

dt

�x2

x1

cTdx � ÿ�q�x2
x1
: �2�

At any interface at which c and=or k are discontinuous, the equations are augmented by the

requirement that T and q must be continuous.

The boundary conditions as x!�1 are that the temperature asymptotes to a constant value T�1
and so the heat ¯ux tends to zero.

De®ning

Tmax�t� � max
x

T �x; t�; Tmin�t� � min
x

T �x; t�; �3�

an important property of solutions of the unsteady diffusion equation is that for any non-uniform

initial conditions T �x; 0� and for all t > 0,

dTmax

dt
4 0;

dTmin

dt
5 0: �4�

Furthermore, if Tÿ1 � T1, then Tmin�t� ! Tmax�t� as t!1. The behaviour of the maximum and

minimum temperature will be important in de®ning the numerical stability of the coupled system.
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Although the above theory is given for general c�x� and k�x�, in this paper we will now restrict

attention to a single interface at x � 0 with c and k having uniform values cÿ and kÿ for x < 0 and c�
and k� for x > 0.

3. FULLY COUPLED DISCRETIZATION

In this section we examine the stability of fully coupled discretizations of the model problem. The

theory for this is well established since it is simply a special case of the more general problem of the

discretization of a parabolic PDE with spatially varying diffusivity.10,11 There are several reasons for

doing this analysis even though it is believed that the fully coupled approach is not the most practical

approach to real coupled applications. The ®rst is to show that in a good fully coupled discretization

there are no instabilities associated with the interface treatment, that stability of the discretization on

the uniform mesh on either side of the interface is a necessary and suf®cient for stability of the fully

coupled discretization. The second is to have a benchmark against which to compare the `weakly

coupled' discretizations in the next section. These will be shown to have interface instabilities under

certain conditions and it is informative to see how these are related to differences in the interface

treatment relative to the fully coupled discretization.

Using a computational grid with uniform spacing Dxÿ for x < 0 and uniform spacing Ds� for

x > 0, the location of grid nodes is given by

xj � jDxÿ; j 4 0;
jDx�; j 5 0:

�
�5�

Associated with each grid node is the discrete temperature variable Tn
j which is to approximate the

analytic solution T �x; t� at x � xj; t � nDt.

3.1. An explicit algorithm

Using forward Euler time differencing and conservative spatial differencing based on the integral

form of the unsteady diffusion equation on the interval xjÿ1=2 4 x4 xj�1=2 gives the explicit

algorithm

Cj�Tn�1
j ÿ Tn

j � � ÿ�qn
j�1=2 ÿ qn

jÿ1=2�; qn
j�1=2 � ÿKj�1=2�Tn

j�1 ÿ Tn
j �; �6�

where

Cj �
cÿDxÿ=Dt; j < 0;
1
2
�cÿDxÿ=Dt � c�Dx�=Dt�; j � 0;

c�Dx�=Dt; j > 0;

8><>: �7�

Kj�1=2 �
kÿ=Dxÿ; j � 1

2
< 0;

k�=Dx�; j � 1
2
> 0:

(
�8�

Note that the equation for j � 0 involves the conductivity and heat capacity on both sides of the

interface. In particular, Dt C0 is the heat capacity of the whole ®nite volume computational cell

extending from xÿ1=2 to x�1=2.

For j 6� 0 the difference equation reduces to

T n�1
j � Tn

j � D��Tn
j�1 ÿ 2Tn

j � Tn
jÿ1�; �9�
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where

d� �
k�Dt

c�Dx2
�
: �10�

Standard Fourier stability analysis on either side of the interface shows that a discrete Fourier mode is

stable provided that d�4 1
2
.

We will now prove that if the requirements of Fourier stability are satis®ed on each side of the

interface, then the fully coupled discretization is stable in the sense that

T n�1
max 4 T n

max; Tn�1
min 5 Tn

min �11�
where

T n
max � max

j
Tn

j ; Tn
min � min

j
Tn

j : �12�

We begin by noting that if d�4 1
2
, then for any positive value r,

dÿ � rd�4 1
2
�1� r� �) dÿ � rd�

1� r
4 1

2
: �13�

We will use this result with r de®ned as the ratio of the heat capacities of the computational cells

on either side of the interface,

r � c�Dx�
cÿDxÿ

: �14�

The next step is to rewrite the full difference equation as

Tn�1
j � �1ÿ aj ÿ bj�Tn

j � ajT
n
j�1 � bjT

n
jÿ1; �15�

where

aj � bj � dÿ; j < 0

a0 �
2dÿ

1� r
; b0 �

2rd�
1� r

;

aj � bj � d�; j > 0:

�16�

Since 0 < d�4 1
2
, then, for all j; aj; bj and 1ÿ aj ÿ bj are positive quantities and thus Tn�1

j is a

positive weighted average of T n
j�1; Tn

j and Tn
jÿ1. Hence

Tn
min 4 min�Tn

j�1; Tn
j ; Tn

jÿ1�4 T n�1
j 4 max�Tn

j�1; Tn
j ; T n

jÿ1�4 T n
max: �17�

This is true for all j and so taking the maximum over all j and the minimum over all j gives the desired

results, equation (11).

3.2. An implicit algorithm

Replacing the forward Euler time differencing with backward Euler time differencing gives the

implicit algorithm

Cj�Tn�1
j ÿ Tn

j � � ÿ�qn�1
j�1=2 ÿ qn�1

jÿ1=2�; qn�1
j�1=2 � ÿKj�1=2�Tn�1

j�1 ÿ Tn�1
j �; �18�

with Cj and Kj�1=2 as de®ned before. Fourier stability analysis of the discretization on either side of

the interface shows it to be unconditionally stable.
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The fully coupled discretization is also unconditionally stable in the same sense as before. To

prove this, the difference equation is rewritten as

Tn�1
j � �1ÿ aj ÿ bj�Tn

j � ajT
n�1
j�1 � bjT

n�1
jÿ1 ; �19�

where

aj �
Kj�1=2

Kj�1=2 � Kjÿ1=2 � Cj

;

bj �
Kjÿ1=2

Kj�1=2 � Kjÿ1=2 � Cj

;

1ÿ aj ÿ bj �
Cj

Kj�1=2 � Kjÿ1=2 � Cj

:

�20�

It is clear that aj; bj and 1ÿ aj ÿ bj are positive quantities for all j. We now choose J such that

T n�1
J � Tn�1

max . Subtracting Tn�1
max from both sides of the difference equation gives

�1ÿ aJ ÿ bJ ��Tn
J ÿ Tn�1

max � � aJ �T n�1
J�1 ÿ Tn�1

max � � bJ �Tn�1
Jÿ1 ÿ Tn�1

max � � 0: �21�
BecauseTn�1

Jÿ1 ; Tn�1
J�1 4 Tn�1

max and aJ ; bJ and 1ÿ aJ ÿ bJ are all positive, either Tn
J > Tn�1

max or

T n
J � T n�1

J�1 � Tn�1
J�1 � Tn�1

max . In the ®rst case we immediately get the result that Tn
max > Tn�1

max . In the

second case we can repeat the argument with j � J � 1. By further repetition if necessary, we

conclude that either Tn
max > Tn�1

max or Tn
j � Tn�1

j � Tn�1
max for all j, in which case Tn

max � Tn�1
max .

Exactly the same argument can be used to prove that Tn
min 4 T n�1

min , with equality occurring only in

the trivial case in which T n
j is constant.

4. LOOSELY COUPLED DISCRETIZATION

In the loosely coupled discretization, each half of the domain is solved separately with boundary

conditions containing information from the other. The natural boundary conditions for a diffusion

problem are either Dirichlet (the speci®cation of the boundary temperature) or Neumann (the

speci®cation of the boundary heat ¯ux). Therefore we will consider a loosely coupled procedure in

which the calculation for x5 0 uses Dirichlet data obtained from the solution for x4 0, while the

calculation for x4 0 uses Neumann data obtained from the solution for x5 0.

4.1. An explicit algorithm

Given existing solutions at time level n in both halves of the domain, the simplest and most natural

explicit numerical algorithm for determining Tn�1
j for j4 0 is

cÿDxÿ
Dt
�Tn�1

j ÿ T n
j � �

kÿ

Dxÿ
�T n

j�1 ÿ 2Tn
j � Tn

jÿ1�; j < 0;

cÿDxÿ
2Dt

�Tn�1
0 ÿ T n

0 � � ÿqw ÿ
kÿ
Dxÿ
�Tn

0 ÿ Tn
ÿ1�;

�22�

where qw is the heat ¯ux speci®ed as the interface boundary condition. Using a ®nite volume

derivation, the equations for j < 0 correspond to the control volume �xjÿ1=2; xj�1=2� of width Dxÿ,

whereas the equation for j � 0 corresponds to the control volume �xÿ1=2; 0� of width 1
2
Dxÿ.

The simplest consistent equation for determining the heat ¯ux at the interface from the data in

j 5 0 is

qw � ÿ
k�
Dx�
�T n

1 ÿ Tn
0 �: �23�
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This one-sided approximation to the temperature gradient at the surface is only ®rst-order-accurate

during unsteady transients. However, it is typical of the numerical methods used for practical

computations.4,5

The corresponding explicit algorithm for simultaneously determining Tn�1
j for j > 0 is

c�Dx�
Dt
�T n�1

j ÿ Tn
j � �

k�

Dx�
�T n

j�1 ÿ 2Tn
j � T n

jÿ1�: �24�

The equation for j � 1 requires the variable Tn
0 and this is set by the Dirichlet boundary condition

Tn
0 � Tw; �25�

where Tw is the interface temperature. The obvious value for this is simply Tn
0 from the computation

for j 4 0.

To summarize the communication between the two calculations for j 4 0 and j5 0, at each time

step there is an exchange of data, with the programme or subroutine performing the calculation for

j 4 0 supplying the value of Tw to the other programme or subroutine performing the calculation for

j 5 0, while the latter sends qw to the former. It is then possible that the computations for the two

halves could proceed in parallel (perhaps using separate processes on separate workstations) until

they again exchange data before the next time step.

By comparing equations (22) and (24) with equation (6), it can be seen that the only difference is

the omission of the term

c�Dx�
2Dt

in the equation for j � 0. If c�Dx� � cÿDxÿ, then this omitted term is negligible compared with the

retained term

cÿDxÿ
2Dt

and so it seems likely that no instability will be introduced by its omission. On the other hand, if

c�Dx� � cÿDxÿ, then the omitted term may be very signi®cant. This indicates very simply that a

key parameter in the following analysis will be the variable r, de®ned earlier in equation (14) as the

ratio of these two quantities.

For the purposes of analysis it is more convenient to consolidate and simplify the equations into

form

T n�1
j � Tn

j � dÿ�Tn
j�1 ÿ 2Tn

j � Tn
jÿ1�; j < 0;

T n�1
0 � Tn

0 ÿ 2dÿ�T n
0 ÿ Tn

ÿ1� � 2rd��T n
1 ÿ Tn

0 �;
T n�1

j � Tn
j � d��Tn

j�1 ÿ 2Tn
j � Tn

jÿ1�; j > 0;

�26�

where d� and r are as de®ned previously.

In applying the stability theory of Godunov and Ryabenkii,8,9 the task is to investigate the

existence of separable normal modes of the form

T n
j � znfj: �27�

The discretization is unstable if the difference equation admits such solutions which satisfy the far-

®eld boundary conditions fj ! 0 as j!�1 and have jzj > 1, giving exponential growth in time.

The form of the solution is very similar to the assumed Fourier modes, except that the amplitude of

the spatial oscillation decays exponentially with jjj away from the interface.
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For this application the normal mode must be of the form

Tn
j � znkjÿ; j 4 0;

znkj
�; j 5 0:

�
�28�

The difference equations (26) are satis®ed provided that the three variables z; kÿ and k� satisfy the

equations

z � 1� dÿ�kÿ ÿ 2� kÿ1
ÿ �;

z � 1� 2dÿ�kÿ1
ÿ ÿ 1� � 2rd��k� ÿ 1�;

z � 1� d��k� ÿ 2� kÿ1
� �:

�29�

Solving the ®rst equation to obtain kÿ1ÿ gives

kÿ1
ÿ � 1ÿ 1ÿ z

2dÿ
1� 1ÿ 4dÿ

1ÿ z

� �r �
:

�
�30�

To satisfy the far-®eld boundary conditions as j!ÿ1, it is necessary to choose the negative square

root when the argument is real and positive. When it is complex, the choice of root is de®ned by the

requirement that jkÿ1ÿ j < 1.

Similarly, solving the third equation gives

k� � 1ÿ 1ÿ z

2d�
1ÿ 1ÿ 4d�

1ÿ z

� �r �
:

�
�31�

Substituting these into the second equation gives the following non-linear equation for z:

1ÿ 4dÿ
1ÿ z

� �
ÿ r 1ÿ 1ÿ 4d�z

1ÿ z

� �r �
� 0:

�r
�32�

There is no simple closed-form solution to this giving z as an explicit function of the parameter

dÿ; d� and r. Instead we consider asymptotic solutions under different assumptions.

When dÿ; d� � 1, the square root terms can be expanded to give the following approximate

equation and solution:

1ÿ 2dÿ
1ÿ z

ÿ 2rd�
1ÿ z

� 0 �) z � 1ÿ 2dÿ ÿ 2rd�: �33�

The requirement for stability is jzj < 1. The solution z�r� lies inside jzj � 1 for suf®ciently small

values of r but then crosses it at z � ÿ1 when r � 1=d�. Thus for dÿ; d� � 1 the stability

requirement is r < 1=d�.

Expanding the analysis to consider arbitrary values for dÿ and d�, we begin by considering the

asymptotic behavior when r � 1 and r � 1.

When r � 1, the second term in equation (32) is relatively small and the approximate solution is

1ÿ 4dÿ
1ÿ z

� �
� 0 �) z � 1ÿ 4dÿ:

r
�34�

Since dÿ must satisfy 0 < dÿ4 1
2

for the discretization to be stable according to Fourier stability

analysis, it follows that jzj4 1. Thus there is no coupled instability when r � 1.
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When r � 1, the ®rst term in equation (32) is relatively small and so to a ®rst approximation the

solution is

1ÿ 1ÿ 4d�
1ÿ z

� �
� 0 �) 4d�

1ÿ z
� 0 �) jzj � 1:

r
�35�

To get a more accurate approximate solution, the ®rst term is approximated using jzj � 1 to obtain

1ÿ 1ÿ 4d�
1ÿ z

� �
� ÿ 1

r
�) 4d�

1ÿ z
� 2

r
�) z � 1ÿ 2rd�:

r
�36�

Thus for ®xed d� and suf®ciently large r there is an instability with z being large, real and negative.

The corresponding values of kÿ1ÿ and k� will be small, real and negative, so the instability will appear

as a `saw-tooth' oscillation mode, both spatially and in time, with an amplitude which decays

exponentially away from the interface but grows exponentially in time.

Since the loosely coupled system is stable for r � 1 and unstable for r � 1, the remaining

question is of the value of r at which the instability begins. This corresponds to the lowest positive

real value of r for which jzj � 1. Because of the requirement that r be real, it can be shown from

equation (32) that this again requires z � ÿ1, in which case

r � �p 1ÿ 2dÿ�
1ÿ �p 1ÿ 2d��

: �37�

Thus the condition for stability is

r <
�p 1ÿ 2dÿ�

1ÿ �p 1ÿ 2d��
: �38�

A typical calculation with a time step close to the Fourier stability limit might have dÿ � d� � 3
8
,

for which the coupled stability limit is r < 1. The key to obtaining stability in practical computations

is the correct choice of which half of the domain uses the Dirichlet boundary conditions and which

half uses the Neumann boundary conditions. The usual practice for the coupled blade=air

computations discussed in Section 1 is to use Neumann boundary conditions for the solid

computation and Dirichlet boundary conditions for the ¯uid computation. For this choice the

corresponding value of r is given by

r � cfluidDxfluid

csolidDxsolid

: �39�

Given typical values for the parameters involved, r is usually very small and so this is stable.

If, on the other hand, one were to use Dirichlet boundary conditions for the solid computation and

Neumann boundary conditions for the ¯uid computation, then the appropriate value for r would be

the inverse of the above quantity, which would be very large. In this case the coupled calculation

would be unstable unless one used an extremely small time step. Using the approximate solution for

r � 1 in equation (36), the time step stability limit is given by

d�4
1

r
; �40�

so stability of the coupled system would require the use of a time step very much smaller than that

needed for Fourier stability.

This analysis is supported by the numerical results presented in Figures 1 and 2. The computations

use the ®nite domain ÿ20004 j 4 2000, initial conditions T0
j � ÿ1 for j < 0 and T0

j � 1 for j 5 0

and boundary conditions Tn
ÿ2000 � ÿ1 and Tn

2000 � 1. In addition, all the computations use

dÿ � d� � 3
8
, for which the analysis above predicts the coupled system to be stable only for r < 1.
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Figure 1 shows two sets of results with Tn
j plotted for the ®rst 10 iterations in each case. In Figure

1(a), r � 1
2

and the solution is clearly stable, with an initial transient at the interface decaying very

quickly, while in Figure 1(b), r� 2 and the solution is very unstable. Figure 2 shows another two sets

of results with Tn
j plotted every 25 iterations. In Figure 2(a), r� 0�99 and the solution appears to be

stable, although with the interface transient decaying more slowly in this case, while in Figure 2(b),

r� 1�01 and the solution is clearly unstable.

4.2. A hybrid algorithm

The next algorithm to consider is a hybrid one in which the computation is unaltered for j > 0 but

the algorithm for j4 0 is replaced by the corresponding implicit method based on a backward Euler

time disretization:

cÿDxÿ
Dt
�Tn�1

j ÿ Tn
j � �

kÿ
Dxÿ
�Tn�1

j�1 ÿ 2Tn�1
j � Tn�1

jÿ1 �; j < 0

cÿDxÿ
2Dt

�Tn�1
0 ÿ Tn

0 � � ÿqw ÿ
kÿ
Dxÿ
�Tn�1

0 ÿ Tn�1
ÿ1 �:

�41�

Figure 1. Explicit algorithm with results every iteration
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The boundary heat ¯ux qw is again de®ned explicitly by

qw � ÿ
k�
Dx�
�T n

1 ÿ Tn
0 �: �42�

The difference equations for j > 0 are unchanged, as is the communication of data between the

calculations for j 4 0 and j > 0.

The consolidated, simpli®ed form of the equations is

Tn�1
j � Tn

j � dÿ�Tn�1
j�1 ÿ 2Tn�1

j � T n�1
jÿ1 �; j < 0;

T n�1
0 � Tn

0 ÿ 2dÿ�Tn�1
0 ÿ Tn�1

ÿ1 � � 2rd��T n
1 ÿ Tn

0 �;
T n�1

j � Tn
j � d��Tn

j�1 ÿ 2T n
j � Tn

jÿ1�; j > 0;

�43�

and the normal mode is again of the form

Tn
j � znkjÿ; j 4 0;

znkj
�; j 5 0:

�
�44�

Figure 2. Explicit algorithm with results every 25 iterations
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The difference equations (43) are satis®ed provided that the three variables z; kÿ and k� satisfy the

equations

1 � zÿ1 � dÿ�kÿ ÿ 2� kÿ1
ÿ �;

1 � zÿ1 � 2dÿ�kÿ1
ÿ ÿ 1� � 2rd�zÿ1�k� ÿ 1�;

z � 1� d��k� ÿ 2� kÿ1
� �:

�45�

The third equation requires that k� depends on z in exactly the same way as for the purely explicit

algorithm. Solving the ®rst equation subject to the far-®eld boundary conditions gives

kÿ1
ÿ � 1� 1ÿ zÿ1

2dÿ
1ÿ 1� 4dÿ

1ÿ zÿ1

� �r �
:

�
�46�

Substituting these into the second equation gives

1� 4dÿ
1ÿ zÿ1

� �r
ÿ r 1ÿ 1ÿ 4d�

1ÿ z

� �r� �
� 0: �47�

When r � 1, the asymptotic solution is

z � �1� 4dÿ�ÿ1 � O�r� �48�

and so the discretization is stable for all values of dÿ.

When r � 1; the asymptotic solution is

z � 1ÿ 2rd�
�p 1� 4dÿ�

� O�rÿ1� �49�

and so the coupled discretization is still unstable for suf®ciently large values of r.

The cross-over from stability to instability again occurs when z � ÿ1, giving

r � �p 1� 2dÿ�
1ÿ �p 1ÿ 2d��

: �50�

Thus the condition for stability is

r <
�p 1� 2dÿ�

1ÿ �p 1ÿ 2d��
: �51�

Comparing this result with the corresponding result for the purely explicit algorithm, it can be seen

that the new stability region is greater except when dÿ � 1. This has a physical interpretation: when

dÿ is not small, the strong implicit coupling of the computational cells for j 4 0 increases the

effective thermal capacity of the cells affected in one time step by the interface heat ¯ux.

Numerical experiments were performed on the same domain with the same initial and boundary

conditions as before and with dÿ � 4 and d� � 3
8
. The analysis above predicts stability provided that

r < 6. This is supported by Figure 3, which shows two sets of results with T n
j plotted every 25

iterations. In Figure 3(a), r � 5�95 and the solution is stable with a slowly decaying interface

transient, while in Figure 3(b), r � 6�05 and the solution is clearly unstable.
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4.3. An implicit algorithm

We now consider an algorithm which is implicit on each side of the interface, but with explicit

updating of the data used for the interface boundary conditions. The implicit numerical algorithm for

j 4 0 is again

cÿDxÿ
Dt
�Tn�1

j ÿ Tn
j � �

kÿ
Dxÿ
�Tn�1

j�1 ÿ 2Tn�1
j � Tn�1

jÿ1 �; j < 0;

cÿDxÿ
2Dt

�Tn�1
0ÿ ÿ Tn

0ÿ� � ÿqw ÿ
kÿ
Dxÿ
�Tn�1

0ÿ ÿ Tn�1
ÿ1 �;

�52�

with qw de®ned explicitly by

qw � ÿ
k�
Dx�
�Tn

1 ÿ T n
0��: �53�

An important point in the above equations is the distinction between Tn
0ÿ, the value of T n at j � 0 as

calculated for the domain j4 0, and Tn
0�, the value of Tn at j � 0 for the domain j5 0. In the

previous discretizations these two values have been identical, but this will not be true in this case.

Figure 3. Hybrid algorithm with results every 25 iterations
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The corresponding implicit numerical algorithm for simultaneously determining Tn�1
j for j > 0 is

c�Dx�
Dt
�T n�1

j ÿ T n
j � �

k�
Dx�
�T n�1

j�1 ÿ 2T n�1
j � Tn�1

jÿ1 �: �54�

The equation for j � 1 requires the variable Tn�1
0� and this is set by the Dirichlet boundary condition

Tn�1
0� � Tw; �55�

where Tw is the interface temperature. Using explicit updating of boundary data,

Tw � T n
0ÿ; �56�

so T0� lags T0ÿ by one iteration.

The pattern of communication between the calculations for j4 0 and j5 0 is exactly the same as

for the explicit algorithm. They exchange the values of Tw and qw at the beginning of the time step,

perform the time step calculations independently (possibly in parallel on separate workstations) and

then repeat the process for the next time step.

For the purposes of analysis it is again more convenient to consolidate and simplify the equations

into the form

T n�1
j � Tn

j � dÿ�Tn�1
j�1 ÿ 2T n�1

j � T n�1
jÿ1 �; j < 0;

T n�1
0ÿ � Tn

0ÿ ÿ 2dÿ�Tn�1
0ÿ ÿ Tn�1

ÿ1 � � 2rd��T n
1 ÿ Tn

0��;
T n�1

j � Tn
j � d��Tn�1

j�1 ÿ 2T n�1
j � T n�1

jÿ1 �; j > 0;

T n�1
0� � Tn

0ÿ

�57�

The form of the normal mode solution for this case is

Tn
j � znkjÿ; j � 0ÿ;ÿ1;ÿ2;ÿ3; . . . ;

znÿ1kj
�; j � 0�; 1; 2; 3; . . . :

�
�58�

The fourth equation in (57) is automatically satis®ed by the above choice of normal mode. The other

three equations require that the variables z; kÿ and k� satisfy the equations

1 � zÿ1 � dÿ�kÿ ÿ 2� kÿ1
ÿ �;

1 � zÿ1 � 2dÿ�kÿ1
ÿ ÿ 1� � 2rd�zÿ2�k� ÿ 1�;

1 � zÿ1 � d��k� ÿ 2� kÿ1
� �:

�59�

Solution of the ®rst and third equations subject to the far-®eld boundary conditions gives

kÿ1
ÿ � 1� 1ÿ zÿ1

2dÿ
1ÿ 1� 4dÿ

1ÿ zÿ1

� �r� �
;

k� � 1� 1ÿ zÿ1

2d�
1ÿ 1� 4d�

1ÿ zÿ1

� �r �
:

� �60�

Substituting these into the second equation gives

1� 4dÿ
1ÿ zÿ1

� �
� rzÿ2 1� 4d�

1ÿ zÿ1
ÿ 1

� �r �
� 0:

�r
�61�

When r � 1, the asymptotic solution is

z � �1� 4dÿ�ÿ1 � O�r� �62�
and so the discretization is stable for all values of dÿ.
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When r � 1, the asymptotic solution is

z � �i r
p �p 1� 4d� ÿ 1�

�p 1� 4dÿ�
� �1=2

� O�1�: �63�

Thus for ®xed dÿ and d� and suf®ciently large r the coupled system is unstable.

It is not possible for general values of dÿ and d� to determine explicitly the value of r above which

the solution procedure is unstable. It is possible, however, to obtain an asymptotic solution under the

assumption dÿ; d� � 1. This is a reasonable assumption since the motivation in using implicit

methods is to use much larger time steps than would be stable using explicit methods. Under the

assumption dÿ; d� � 1, equation (61) reduces to

d
p
ÿ � rzÿ2 d

p
� � 0 �) z � �i r

p d�
dÿ

� �1=4

: �64�

Hence under these conditions the approximate stability limit is

r <
dÿ
d�

� �
;

r
�65�

which can also be re-expressed as

c3�Dx4�
k�

<
c3ÿDx4ÿ

kÿ
: �66�

Provided, as before, that the correct choice is made as to which domain uses the Neumann BCs and

which uses the Dirichlet BCs, then r should be suf®ciently small that practical computations will be

stable.

Numerical experiments were performed on the same domain with the same initial and boundary

conditions as before and with dÿ � d� � 50. The approximate stability limit for these values is

r < 1. This is supported by Figure 4, which shows two sets of results with Tn
j plotted every 25

iterations. In Figure 4(a), r � 1 and the solution is stable with a slowly decaying interface transient,

while in Figure 4(b) ; r � 1�1 and the solution is clearly unstable.

5. CONCLUDING REMARKS

The stability analysis in this paper has shown the viability of a loosely coupled approach to

computing the temperature and heat ¯ux in coupled ¯uid=structure interactions. The key point to

achieving numerical stability is the use of Neumann boundary conditions for the structural calculation

and Dirichlet boundary conditions for the ¯uid calculation.

Although the analysis was performed here for the 1D model diffusion equation, the results are

believed to be applicable to the real situation in which the 3D diffusion equation is used to model the

heat ¯ux in the structure and the 3D Navier±Stokes equations are used to model the behaviour of the

¯uid. This is supported by the practical experience of 3D computations performed using this coupling

procedure.2,3

The analysis also assumed a time-accurate modelling of the ¯uid=structure interaction. In practical

computations the point of engineering interest is often the steady state temperature and heat ¯ux

distributions. In such cases the computations in the structure and ¯uid can both proceed with different

time steps given by their respective Fourier stability limits. The coupled normal mode analyses

remain valid using the values of dÿ and d� based on the time steps Dtÿ and Dt� used in the two

domains.
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